Deconfounding Hypothesis Generation and Evaluation in Bayesian Models
نویسندگان
چکیده
Bayesian models of cognition are typically used to describe human learning and inference at the computational level, identifying which hypotheses people should select to explain observed data given a particular set of inductive biases. However, such an analysis can be consistent with human behavior even if people are not actually carrying out exact Bayesian inference. We analyze a simple algorithm by which people might be approximating Bayesian inference, in which a limited set of hypotheses are generated and then evaluated using Bayes’ rule. Our mathematical results indicate that a purely computationallevel analysis of learners using this algorithm would confound the distinct processes of hypothesis generation and hypothesis evaluation. We use a causal learning experiment to establish empirically that the processes of generation and evaluation can be distinguished in human learners, demonstrating the importance of recognizing this distinction when interpreting Bayesian models.
منابع مشابه
Predicting waste generation using Bayesian model averaging
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...
متن کاملEvaluation of Time Series Patterns for Wind Speed Volatilities in Anzali Meteorological Station
Abstract. One of the major problems in using wind energy is that wind-generated electricity is more unstable than electricity generated by other sources, and therefore integrating wind energy use with traditional power generation systems can be a challenge. This problem can be effectively reduced by having accurate information about the mean and wind speed volatilities. Therefore, in this paper...
متن کاملComparison of Bayesian and Frequentist Methods in Estimating the Net Reclassification and Integrated Discrimination Improvement Indices for Evaluation of Prediction Models: Tehran Lipid and Glucose Study
Introduction: The Frequency-based method is commonly used to estimate the Net Reclassification Improvement (NRI)- and Integrated Discrimination Improvement (IDI) indices. These indices measure the magnitude of the performance of statistical models when a new biomarker is added. This method has poor performance in some cases, especially in small samples. In this study, the performance of two Bay...
متن کاملBayesian Econometrics Approach in Determining of Effecting Factors on Pollution in Developing Countries (based on Environmental Performance Index)
Emphasis on sustainable development and the need to protect the environment as well as the adverse effects of environmental pollution on the quality of life have made environmental protection one of the main concerns of economic policymakers. For this purpose, approaches to improve the quality of the environment and the factors affecting it have triggered extensive theoretical and empirical stu...
متن کاملBayesian Econometrics Approach in Determining of Effecting Factors on Pollution in Developing Countries (based on Environmental Performance Index)
Emphasis on sustainable development and the need to protect the environment as well as the adverse effects of environmental pollution on the quality of life have made environmental protection one of the main concerns of economic policymakers. For this purpose, approaches to improve the quality of the environment and the factors affecting it have triggered extensive theoretical and empirical stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010